Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Uniquely determined pure quantum states need not be unique ground states of quasi-local Hamiltonians (1902.09481v1)

Published 25 Feb 2019 in quant-ph

Abstract: We consider the problem of characterizing states of a multipartite quantum system from restricted, quasi-local information, with emphasis on uniquely determined pure states. By leveraging tools from dissipative quantum control theory, we show how the search for states consistent with an assigned list of reduced density matrices may be restricted to a proper subspace, which is determined solely by their supports. The existence of a quasi-local observable which attains its unique minimum over such a subspace further provides a sufficient criterion for a pure state to be uniquely determined by its reduced states. While the condition that a pure state is uniquely determined is necessary for it to arise as a non-degenerate ground state of a quasi-local Hamiltonian, we prove the opposite implication to be false in general, by exhibiting an explicit analytic counterexample. We show how the problem of determining whether a quasi-local parent Hamiltonian admitting a given pure state as its unique ground state is dual, in the sense of semidefinite programming, to the one of determining whether such a state is uniquely determined by the quasi-local information. Failure of this dual program to attain its optimal value is what prevents these two classes of states to coincide.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.