Papers
Topics
Authors
Recent
Search
2000 character limit reached

Étale inverse semigroupoids - the fundamentals

Published 25 Feb 2019 in math.DS, math.CT, and math.OA | (1902.09375v1)

Abstract: In this article we will study semigroupoids, and more specifically inverse semigroupoids. These are a common generalization to both inverse semigroups and groupoids, and provide a natural language on which several types of dynamical structures may be described. Moreover, this theory allows us to precisely compare and simultaneously generalize aspects of both the theories of inverse semigroups and groupoids. We begin by comparing and settling the differences between two notions of semigroupoids which appear in the literature (one by Tilson and another by Exel). We specialize this study to inverse semigroupoids, and in particular an analogue of the Vagner-Preston Theorem is obtained. This representation theorem leads to natural notions of actions, and more generally $\land$-preactions and partial actions, of \'etale inverse semigroupoids, which generalize topological actions of inverse semigroups and continuous actions of \'etale groupoids. Many constructions which are commonplace in the theories of inverse semigroups and groupoids are also generalized, and their categorical properties made explicit. We finish this paper with a version of non-commutative Stone duality for ample inverse semigroupoids, which utilizes several of the aforementioned constructions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.