Papers
Topics
Authors
Recent
2000 character limit reached

Batch Virtual Adversarial Training for Graph Convolutional Networks

Published 25 Feb 2019 in cs.LG, cs.AI, and stat.ML | (1902.09192v2)

Abstract: We present batch virtual adversarial training (BVAT), a novel regularization method for graph convolutional networks (GCNs). BVAT addresses the shortcoming of GCNs that do not consider the smoothness of the model's output distribution against local perturbations around the input. We propose two algorithms, sample-based BVAT and optimization-based BVAT, which are suitable to promote the smoothness of the model for graph-structured data by either finding virtual adversarial perturbations for a subset of nodes far from each other or generating virtual adversarial perturbations for all nodes with an optimization process. Extensive experiments on three citation network datasets Cora, Citeseer and Pubmed and a knowledge graph dataset Nell validate the effectiveness of the proposed method, which establishes state-of-the-art results in the semi-supervised node classification tasks.

Citations (62)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.