Papers
Topics
Authors
Recent
2000 character limit reached

Marathon Environments: Multi-Agent Continuous Control Benchmarks in a Modern Video Game Engine

Published 25 Feb 2019 in cs.AI, cs.LG, and cs.MA | (1902.09097v1)

Abstract: Recent advances in deep reinforcement learning in the paradigm of locomotion using continuous control have raised the interest of game makers for the potential of digital actors using active ragdoll. Currently, the available options to develop these ideas are either researchers' limited codebase or proprietary closed systems. We present Marathon Environments, a suite of open source, continuous control benchmarks implemented on the Unity game engine, using the Unity ML- Agents Toolkit. We demonstrate through these benchmarks that continuous control research is transferable to a commercial game engine. Furthermore, we exhibit the robustness of these environments by reproducing advanced continuous control research, such as learning to walk, run and backflip from motion capture data; learning to navigate complex terrains; and by implementing a video game input control system. We show further robustness by training with alternative algorithms found in OpenAI.Baselines. Finally, we share strategies for significantly reducing the training time.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.