Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

General form of Chebyshev type inequality for generalized Sugeno integral (1902.08839v1)

Published 23 Feb 2019 in math.GM

Abstract: We prove a~general form of Chebyshev type inequality for generalized upper Sugeno integral in the form of necessary and sufficient condition. A key role in our considerations is played by the~class of $m$-positively dependent functions which includes comonotone functions as a~proper subclass. As a~consequence, we state an equivalent condition for Chebyshev type inequality to be true for all comonotone functions and any monotone measure. Our results generalize many others obtained in the framework of q-integral, seminormed fuzzy integral and Sugeno integral on the real half-line. Some further consequences of these results are obtained, among others Chebyshev type inequality for any functions. We also point out some flaws in existing results and provide their improvements.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube