Papers
Topics
Authors
Recent
Search
2000 character limit reached

Floquet Chern Insulators of Light

Published 22 Feb 2019 in physics.optics | (1902.08560v2)

Abstract: Achieving topologically-protected robust transport in optical systems has recently been of great interest. Most topological photonic structures can be understood by solving the eigenvalue problem of Maxwell's equations for a static linear system. Here, we extend topological phases into dynamically driven nonlinear systems and achieve a Floquet Chern insulator of light in nonlinear photonic crystals (PhCs). Specifically, we start by presenting the Floquet eigenvalue problem in driven two-dimensional PhCs and show it is necessarily non-Hermitian. We then define topological invariants associated with Floquet bands using non-Hermitian topological band theory, and show that topological band gaps with non-zero Chern number can be opened by breaking time-reversal symmetry through the driving field. Furthermore, we show that topological phase transitions between Floquet Chern insulators and normal insulators occur at synthetic Weyl points in a three-dimensional parameter space consisting of two momenta and the driving frequency. Finally, we numerically demonstrate the existence of chiral edge states at the interfaces between a Floquet Chern insulator and normal insulators, where the transport is non-reciprocal and uni-directional. Our work paves the way to further exploring topological phases in driven nonlinear optical systems and their optoelectronic applications, and our method of inducing Floquet topological phases is also applicable to other wave systems, such as phonons, excitons, and polaritons.

Citations (58)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.