Counterfactual Inference in Duration Models with Random Censoring (1902.08502v1)
Abstract: We propose a counterfactual Kaplan-Meier estimator that incorporates exogenous covariates and unobserved heterogeneity of unrestricted dimensionality in duration models with random censoring. Under some regularity conditions, we establish the joint weak convergence of the proposed counterfactual estimator and the unconditional Kaplan-Meier (1958) estimator. Applying the functional delta method, we make inference on the cumulative hazard policy effect, that is, the change of duration dependence in response to a counterfactual policy. We also evaluate the finite sample performance of the proposed counterfactual estimation method in a Monte Carlo study.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.