Multi-marginal Schrodinger bridges (1902.08319v1)
Abstract: We consider the problem to identify the most likely flow in phase space, of (inertial) particles under stochastic forcing, that is in agreement with spatial (marginal) distributions that are specified at a set of points in time. The question raised generalizes the classical Schrodinger Bridge Problem (SBP) which seeks to interpolate two specified end-point marginal distributions of overdamped particles driven by stochastic excitation. While we restrict our analysis to second-order dynamics for the particles, the data represents partial (i.e., only positional) information on the flow at {\em multiple} time-points. The solution sought, as in SBP, represents a probability law on the space of paths this closest to a uniform prior while consistent with the given marginals. We approach this problem as an optimal control problem to minimize an action integral a la Benamou-Brenier, and derive a time-symmetric formulation that includes a Fisher information term on the velocity field. We underscore the relation of our problem to recent measure-valued splines in Wasserstein space, which is akin to that between SBP and Optimal Mass Transport (OMT). The connection between the two provides a Sinkhorn-like approach to computing measure-valued splines. We envision that interpolation between measures as sought herein will have a wide range of applications in signal/images processing as well as in data science in cases where data have a temporal dimension.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.