Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 32 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Local limit theorem for randomly deforming billiards (1902.06850v1)

Published 19 Feb 2019 in math.DS

Abstract: We study limit theorems in the context of random perturbations of dispersing billiards in finite and infinite measure. In the context of a planar periodic Lorentz gas with finite horizon, we consider random perturbations in the form of movements and deformations of scatterers. We prove a Central Limit Theorem for the cell index of planar motion, as well as a mixing Local Limit Theorem for the cell index with piecewise H\"older continuous observables. In the context of the infinite measure random system, we prove limit theorems regarding visits to new obstacles and self-intersections, as well as decorrelation estimates. The main tool we use is the adaptation of anisotropic Banach spaces to the random setting.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube