Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Tunable Loss Function for Binary Classification (1902.04639v2)

Published 12 Feb 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: We present $\alpha$-loss, $\alpha \in [1,\infty]$, a tunable loss function for binary classification that bridges log-loss ($\alpha=1$) and $0$-$1$ loss ($\alpha = \infty$). We prove that $\alpha$-loss has an equivalent margin-based form and is classification-calibrated, two desirable properties for a good surrogate loss function for the ideal yet intractable $0$-$1$ loss. For logistic regression-based classification, we provide an upper bound on the difference between the empirical and expected risk at the empirical risk minimizers for $\alpha$-loss by exploiting its Lipschitzianity along with recent results on the landscape features of empirical risk functions. Finally, we show that $\alpha$-loss with $\alpha = 2$ performs better than log-loss on MNIST for logistic regression.

Citations (27)

Summary

We haven't generated a summary for this paper yet.