Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tunable Measures for Information Leakage and Applications to Privacy-Utility Tradeoffs (1809.09231v3)

Published 24 Sep 2018 in cs.IT and math.IT

Abstract: We introduce a tunable measure for information leakage called maximal alpha-leakage. This measure quantifies the maximal gain of an adversary in inferring any (potentially random) function of a dataset from a release of the data. The inferential capability of the adversary is, in turn, quantified by a class of adversarial loss functions that we introduce as $\alpha$-loss, $\alpha\in[1,\infty]$. The choice of $\alpha$ determines the specific adversarial action and ranges from refining a belief (about any function of the data) for $\alpha=1$ to guessing the most likely value for $\alpha=\infty$ while refining the $\alpha{th}$ moment of the belief for $\alpha$ in between. Maximal alpha-leakage then quantifies the adversarial gain under $\alpha$-loss over all possible functions of the data. In particular, for the extremal values of $\alpha=1$ and $\alpha=\infty$, maximal alpha-leakage simplifies to mutual information and maximal leakage, respectively. For $\alpha\in(1,\infty)$ this measure is shown to be the Arimoto channel capacity of order $\alpha$. We show that maximal alpha-leakage satisfies data processing inequalities and a sub-additivity property thereby allowing for a weak composition result. Building upon these properties, we use maximal alpha-leakage as the privacy measure and study the problem of data publishing with privacy guarantees, wherein the utility of the released data is ensured via a hard distortion constraint. Unlike average distortion, hard distortion provides a deterministic guarantee of fidelity. We show that under a hard distortion constraint, for $\alpha>1$ the optimal mechanism is independent of $\alpha$, and therefore, the resulting optimal tradeoff is the same for all values of $\alpha>1$. Finally, the tunability of maximal alpha-leakage as a privacy measure is also illustrated for binary data with average Hamming distortion as the utility measure.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jiachun Liao (11 papers)
  2. Oliver Kosut (64 papers)
  3. Lalitha Sankar (97 papers)
  4. Flavio du Pin Calmon (21 papers)
Citations (87)

Summary

We haven't generated a summary for this paper yet.