Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Global Collaboration through Local Interaction in Competitive Learning (1902.03856v1)

Published 11 Feb 2019 in cs.LG, cs.NE, and stat.ML

Abstract: Feature maps, that preserve the global topology of arbitrary datasets, can be formed by self-organizing competing agents. So far, it has been presumed that global interaction of agents is necessary for this process. We establish that this is not the case, and that global topology can be uncovered through strictly local interactions. Enforcing uniformity of map quality across all agents, results in an algorithm that is able to consistently uncover the global topology of diversely challenging datasets.The applicability and scalability of this approach is further tested on a large point cloud dataset, revealing a linear relation between map training time and size. The presented work not only reduces algorithmic complexity but also constitutes first step towards a distributed self organizing map.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.