Papers
Topics
Authors
Recent
2000 character limit reached

A Vocoder-free WaveNet Voice Conversion with Non-Parallel Data

Published 11 Feb 2019 in eess.AS and cs.SD | (1902.03705v2)

Abstract: In a typical voice conversion system, vocoder is commonly used for speech-to-features analysis and features-to-speech synthesis. However, vocoder can be a source of speech quality degradation. This paper presents a vocoder-free voice conversion approach using WaveNet for non-parallel training data. Instead of dealing with the intermediate features, the proposed approach utilizes the WaveNet to map the Phonetic PosteriorGrams (PPGs) to the waveform samples directly. In this way, we avoid the estimation errors caused by vocoder and feature conversion. Additionally, as PPG is assumed to be speaker independent, the proposed method also reduces the feature mismatch problem in WaveNet vocoder based approaches. Experimental results conducted on the CMU-ARCTIC database show that the proposed approach significantly outperforms the baseline approaches in terms of speech quality.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.