Papers
Topics
Authors
Recent
Search
2000 character limit reached

Facial Micro-Expression Spotting and Recognition using Time Contrasted Feature with Visual Memory

Published 9 Feb 2019 in cs.CV | (1902.03514v2)

Abstract: Facial micro-expressions are sudden involuntary minute muscle movements which reveal true emotions that people try to conceal. Spotting a micro-expression and recognizing it is a major challenge owing to its short duration and intensity. Many works pursued traditional and deep learning based approaches to solve this issue but compromised on learning low-level features and higher accuracy due to unavailability of datasets. This motivated us to propose a novel joint architecture of spatial and temporal network which extracts time-contrasted features from the feature maps to contrast out micro-expression from rapid muscle movements. The usage of time contrasted features greatly improved the spotting of micro-expression from inconspicuous facial movements. Also, we include a memory module to predict the class and intensity of the micro-expression across the temporal frames of the micro-expression clip. Our method achieves superior performance in comparison to other conventional approaches on CASMEII dataset.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.