Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Public decision support for low population density areas: An imbalance-aware hyper-ensemble for spatio-temporal crime prediction (1902.03237v1)

Published 1 Feb 2019 in cs.CY

Abstract: Crime events are known to reveal spatio-temporal patterns, which can be used for predictive modeling and subsequent decision support. While the focus has hitherto been placed on areas with high population density, we address the challenging undertaking of predicting crime hotspots in regions with low population densities and highly unequally-distributed crime.This results in a severe sparsity (i.e., class imbalance) of the outcome variable, which impedes predictive modeling. To alleviate this, we develop machine learning models for spatio-temporal prediction that are specifically adjusted for an imbalanced distribution of the class labels and test them in an actual setting with state-of-the-art predictors (i.e., socio-economic, geographical, temporal, meteorological, and crime variables in fine resolution). The proposed imbalance-aware hyper-ensemble increases the hit ratio considerably from 18.1% to 24.6% when aiming for the top 5% of hotspots, and from 53.1% to 60.4% when aiming for the top 20% of hotspots.

Citations (50)

Summary

We haven't generated a summary for this paper yet.