Papers
Topics
Authors
Recent
Search
2000 character limit reached

Heterogeneous Edge Embeddings for Friend Recommendation

Published 7 Feb 2019 in cs.SI, cs.LG, and stat.ML | (1902.03124v1)

Abstract: We propose a friend recommendation system (an application of link prediction) using edge embeddings on social networks. Most real-world social networks are multi-graphs, where different kinds of relationships (e.g. chat, friendship) are possible between a pair of users. Existing network embedding techniques do not leverage signals from different edge types and thus perform inadequately on link prediction in such networks. We propose a method to mine network representation that effectively exploits heterogeneity in multi-graphs. We evaluate our model on a real-world, active social network where this system is deployed for friend recommendation for millions of users. Our method outperforms various state-of-the-art baselines on Hike's social network in terms of accuracy as well as user satisfaction.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.