Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extending the Bump Hunt with Machine Learning

Published 4 Feb 2019 in hep-ph and hep-ex | (1902.02634v2)

Abstract: The oldest and most robust technique to search for new particles is to look for `bumps' in invariant mass spectra over smoothly falling backgrounds. We present a new extension of the bump hunt that naturally benefits from modern machine learning algorithms while remaining model-agnostic. This approach is based on the Classification Without Labels (CWoLa) method where the invariant mass is used to create two potentially mixed samples, one with little or no signal and one with a potential resonance. Additional features that are uncorrelated with the invariant mass can be used for training the classifier. Given the lack of new physics signals at the Large Hadron Collider (LHC), such model-agnostic approaches are critical for ensuring full coverage to fully exploit the rich datasets from the LHC experiments. In addition to illustrating how the new method works in simple test cases, we demonstrate the power of the extended bump hunt on a realistic all-hadronic resonance search in a channel that would not be covered with existing techniques.

Citations (136)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.