Papers
Topics
Authors
Recent
Search
2000 character limit reached

On maximum volume submatrices and cross approximation for symmetric semidefinite and diagonally dominant matrices

Published 6 Feb 2019 in math.NA and cs.DM | (1902.02283v1)

Abstract: The problem of finding a $k \times k$ submatrix of maximum volume of a matrix $A$ is of interest in a variety of applications. For example, it yields a quasi-best low-rank approximation constructed from the rows and columns of $A$. We show that such a submatrix can always be chosen to be a principal submatrix if $A$ is symmetric semidefinite or diagonally dominant. Then we analyze the low-rank approximation error returned by a greedy method for volume maximization, cross approximation with complete pivoting. Our bound for general matrices extends an existing result for symmetric semidefinite matrices and yields new error estimates for diagonally dominant matrices. In particular, for doubly diagonally dominant matrices the error is shown to remain within a modest factor of the best approximation error. We also illustrate how the application of our results to cross approximation for functions leads to new and better convergence results.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.