Papers
Topics
Authors
Recent
2000 character limit reached

Chern-Gauss-Bonnet formula for singular Yamabe metrics in dimension four

Published 5 Feb 2019 in math.DG | (1902.01562v1)

Abstract: We derive a formula of Chern-Gauss-Bonnet type for the Euler characteristic of a four dimensional manifold-with-boundary in terms of the geometry of the Loewner-Nirenberg singular Yamabe metric in a prescribed conformal class. The formula involves the renormalized volume and a boundary integral. It is shown that if the boundary is umbilic, then the sum of the renormalized volume and the boundary integral is a conformal invariant. Analogous results are proved for asymptotically hyperbolic metrics in dimension four for which the second elementary symmetric function of the eigenvalues of the Schouten tensor is constant. Extensions and generalizations of these results are discussed. Finally, a general result is proved identifying the infinitesimal anomaly of the renormalized volume of an asymptotically hyperbolic metric in terms of its renormalized volume coefficients, and used to outline alternate proofs of the conformal invariance of the renormalized volume plus boundary integral.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.