Stiefel manifolds and polygons
Abstract: Polygons are compound geometric objects, but when trying to understand the expected behavior of a large collection of random polygons -- or even to formalize what a random polygon is -- it is convenient to interpret each polygon as a point in some parameter space, essentially trading the complexity of the object for the complexity of the space. In this paper I describe such an interpretation where the parameter space is a Stiefel manifold and show how to exploit the geometry of the Stiefel manifold both to generate random polygons and to morph one polygon into another.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.