2000 character limit reached
Waring rank of symmetric tensors, and singularities of some projective hypersurfaces (1902.01351v4)
Published 4 Feb 2019 in math.AG
Abstract: We show that if a homogeneous polynomial $f$ in $n$ variables has Waring rank $n+1$, then the corresponding projective hypersurface $f=0$ has at most isolated singularities, and the type of these singularities is completely determined by the combinatorics of a hyperplane arrangement naturally associated with the Waring decomposition of $f$. We also discuss the relation between the Waring rank and the type of singularities on a plane curve, when this curve is defined by the suspension of a binary form, or when the Waring rank is 5.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.