Papers
Topics
Authors
Recent
Search
2000 character limit reached

Kleinian Schottky groups, Patterson-Sullivan measures and Fourier decay

Published 4 Feb 2019 in math.DS | (1902.01103v1)

Abstract: Let $\Gamma$ be a Zariski dense Kleinian Schottky subgroup of PSL2(C). Let $\Lambda(\Gamma)$ be its limit set, endowed with a Patterson-Sullivan measure $\mu$ supported on $\Lambda(\Gamma)$. We show that the Fourier transform $\widehat{\mu}(\xi)$ enjoys polynomial decay as $\vert \xi \vert$ goes to infinity. This is a PSL2(C) version of the result of Bourgain-Dyatlov [8], and uses the decay of exponential sums based on Bourgain-Gamburd sum-product estimate on C. These bounds on exponential sums require a delicate non-concentration hypothesis which is proved using some representation theory and regularity estimates for stationary measures of certain random walks on linear groups.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.