Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seizure Type Classification using EEG signals and Machine Learning: Setting a benchmark (1902.01012v2)

Published 4 Feb 2019 in cs.LG, q-bio.QM, and stat.ML

Abstract: Accurate classification of seizure types plays a crucial role in the treatment and disease management of epileptic patients. Epileptic seizure types not only impact the choice of drugs but also the range of activities a patient can safely engage in. With recent advances being made towards artificial intelligence enabled automatic seizure detection, the next frontier is the automatic classification of seizure types. On that note, in this paper, we explore the application of machine learning algorithms for multi-class seizure type classification. We used the recently released TUH EEG seizure corpus (V1.4.0 and V1.5.2) and conducted a thorough search space exploration to evaluate the performance of a combination of various pre-processing techniques, machine learning algorithms, and corresponding hyperparameters on this task. We show that our algorithms can reach a weighted $F1$ score of up to 0.901 for seizure-wise cross validation and 0.561 for patient-wise cross validation thereby setting a benchmark for scalp EEG based multi-class seizure type classification.

Citations (26)

Summary

We haven't generated a summary for this paper yet.