Papers
Topics
Authors
Recent
Search
2000 character limit reached

Linear recursions for integer point transforms

Published 3 Feb 2019 in math.CO and math.MG | (1902.00973v2)

Abstract: We consider the integer point transform $\sigma _P (\mathbf{x}) = \sum _{\mathbf{m} \in P\cap \mathbb{Z}n} \mathbf{x}\mathbf{m} \in \mathbb C [x_1{\pm 1},\ldots, x_n{\pm 1}]$ of a polytope $P\subset \mathbb{R}n$. We show that if $P$ is a lattice polytope then for any polytope $Q$ the sequence $\lbrace \sigma _{kP+Q}(\mathbf{x})\rbrace _{k\geq 0}$ satisfies a multivariate linear recursion that only depends on the vertices of $P$. We recover Brion's Theorem and by applying our results to Schur polynomials we disprove a conjecture of Alexandersson (2014).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.