Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian optimization in ab initio nuclear physics

Published 3 Feb 2019 in nucl-th, cs.LG, and stat.ML | (1902.00941v1)

Abstract: Theoretical models of the strong nuclear interaction contain unknown coupling constants (parameters) that must be determined using a pool of calibration data. In cases where the models are complex, leading to time consuming calculations, it is particularly challenging to systematically search the corresponding parameter domain for the best fit to the data. In this paper, we explore the prospect of applying Bayesian optimization to constrain the coupling constants in chiral effective field theory descriptions of the nuclear interaction. We find that Bayesian optimization performs rather well with low-dimensional parameter domains and foresee that it can be particularly useful for optimization of a smaller set of coupling constants. A specific example could be the determination of leading three-nucleon forces using data from finite nuclei or three-nucleon scattering experiments.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.