Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantitative Weak Convergence for Discrete Stochastic Processes

Published 3 Feb 2019 in math.ST, cs.LG, stat.ML, and stat.TH | (1902.00832v2)

Abstract: In this paper, we quantitative convergence in $W_2$ for a family of Langevin-like stochastic processes that includes stochastic gradient descent and related gradient-based algorithms. Under certain regularity assumptions, we show that the iterates of these stochastic processes converge to an invariant distribution at a rate of $\tilde{O}\lrp{1/\sqrt{k}}$ where $k$ is the number of steps; this rate is provably tight up to log factors. Our result reduces to a quantitative form of the classical Central Limit Theorem in the special case when the potential is quadratic.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.