Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Driven Analysis of Tiny Touchscreen Performance with MicroJam (1902.00680v1)

Published 2 Feb 2019 in cs.MM and cs.HC

Abstract: The widespread adoption of mobile devices, such as smartphones and tablets, has made touchscreens a common interface for musical performance. New mobile musical instruments have been designed that embrace collaborative creation and that explore the affordances of mobile devices, as well as their constraints. While these have been investigated from design and user experience perspectives, there is little examination of the performers' musical outputs. In this work, we introduce a constrained touchscreen performance app, MicroJam, designed to enable collaboration between performers, and engage in a novel data-driven analysis of more than 1600 performances using the app. MicroJam constrains performances to five seconds, and emphasises frequent and casual music making through a social media-inspired interface. Performers collaborate by replying to performances, adding new musical layers that are played back at the same time. Our analysis shows that users tend to focus on the centre and diagonals of the touchscreen area, and tend to swirl or swipe rather than tap. We also observe that while long swipes dominate the visual appearance of performances, the majority of interactions are short with limited expressive possibilities. Our findings are summarised into a set of design recommendations for MicroJam and other touchscreen apps for social musical interaction.

Citations (2)

Summary

We haven't generated a summary for this paper yet.