Ensembling methods for countrywide short term forecasting of gas demand
Abstract: Gas demand is made of three components: Residential, Industrial, and Thermoelectric Gas Demand. Herein, the one-day-ahead prediction of each component is studied, using Italian data as a case study. Statistical properties and relationships with temperature are discussed, as a preliminary step for an effective feature selection. Nine "base forecasters" are implemented and compared: Ridge Regression, Gaussian Processes, Nearest Neighbours, Artificial Neural Networks, Torus Model, LASSO, Elastic Net, Random Forest, and Support Vector Regression (SVR). Based on them, four ensemble predictors are crafted: simple average, weighted average, subset average, and SVR aggregation. We found that ensemble predictors perform consistently better than base ones. Moreover, our models outperformed Transmission System Operator (TSO) predictions in a two-year out-of-sample validation. Such results suggest that combining predictors may lead to significant performance improvements in gas demand forecasting.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.