Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

From genome to phenome: Predicting multiple cancer phenotypes based on somatic genomic alterations via the genomic impact transformer (1902.00078v3)

Published 31 Jan 2019 in q-bio.MN

Abstract: Cancers are mainly caused by somatic genomic alterations (SGAs) that perturb cellular signaling systems and eventually activate oncogenic processes. Therefore, understanding the functional impact of SGAs is a fundamental task in cancer biology and precision oncology. Here, we present a deep neural network model with encoder-decoder architecture, referred to as genomic impact transformer (GIT), to infer the functional impact of SGAs on cellular signaling systems through modeling the statistical relationships between SGA events and differentially expressed genes (DEGs) in tumors. The model utilizes a multi-head self-attention mechanism to identify SGAs that likely cause DEGs, or in other words, differentiating potential driver SGAs from passenger ones in a tumor. GIT model learns a vector (gene embedding) as an abstract representation of functional impact for each SGA-affected gene. Given SGAs of a tumor, the model can instantiate the states of the hidden layer, providing an abstract representation (tumor embedding) reflecting characteristics of perturbed molecular/cellular processes in the tumor, which in turn can be used to predict multiple phenotypes. We apply the GIT model to 4,468 tumors profiled by The Cancer Genome Atlas (TCGA) project. The attention mechanism enables the model to better capture the statistical relationship between SGAs and DEGs than conventional methods, and distinguishes cancer drivers from passengers. The learned gene embeddings capture the functional similarity of SGAs perturbing common pathways. The tumor embeddings are shown to be useful for tumor status representation, and phenotype prediction including patient survival time and drug response of cancer cell lines.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.