2000 character limit reached
A splitting lemma for coherent sheaves (1901.11393v1)
Published 31 Jan 2019 in math.CV
Abstract: The presented splitting lemma extends the techniques of Gromov and Forstneri\v{c} to glue local sections of a given analytic sheaf, a key step in the proof of all Oka principles. The novelty on which the proof depends is a lifting lemma for transition maps of coherent sheaves, which yields a reduction of the proof to the work of Forstneri\v{c}. As applications we get shortcuts in the proofs of Forster and Ramspott's Oka principle for admissible pairs and of the interpolation property of sections of elliptic submersions, an extension of Gromov's results obtained by Forstneri\v{c} and Prezelj.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.