Papers
Topics
Authors
Recent
Search
2000 character limit reached

Capturing Object Detection Uncertainty in Multi-Layer Grid Maps

Published 31 Jan 2019 in cs.RO and cs.CV | (1901.11284v1)

Abstract: We propose a deep convolutional object detector for automated driving applications that also estimates classification, pose and shape uncertainty of each detected object. The input consists of a multi-layer grid map which is well-suited for sensor fusion, free-space estimation and machine learning. Based on the estimated pose and shape uncertainty we approximate object hulls with bounded collision probability which we find helpful for subsequent trajectory planning tasks. We train our models based on the KITTI object detection data set. In a quantitative and qualitative evaluation some models show a similar performance and superior robustness compared to previously developed object detectors. However, our evaluation also points to undesired data set properties which should be addressed when training data-driven models or creating new data sets.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.