Papers
Topics
Authors
Recent
Search
2000 character limit reached

Information-Theoretic Understanding of Population Risk Improvement with Model Compression

Published 27 Jan 2019 in stat.ML, cs.IT, cs.LG, and math.IT | (1901.09421v1)

Abstract: We show that model compression can improve the population risk of a pre-trained model, by studying the tradeoff between the decrease in the generalization error and the increase in the empirical risk with model compression. We first prove that model compression reduces an information-theoretic bound on the generalization error; this allows for an interpretation of model compression as a regularization technique to avoid overfitting. We then characterize the increase in empirical risk with model compression using rate distortion theory. These results imply that the population risk could be improved by model compression if the decrease in generalization error exceeds the increase in empirical risk. We show through a linear regression example that such a decrease in population risk due to model compression is indeed possible. Our theoretical results further suggest that the Hessian-weighted $K$-means clustering compression approach can be improved by regularizing the distance between the clustering centers. We provide experiments with neural networks to support our theoretical assertions.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.