Papers
Topics
Authors
Recent
Search
2000 character limit reached

Anomaly detecting and ranking of the cloud computing platform by multi-view learning

Published 27 Jan 2019 in cs.LG and stat.ML | (1901.09294v1)

Abstract: Anomaly detecting as an important technical in cloud computing is applied to support smooth running of the cloud platform. Traditional detecting methods based on statistic, analysis, etc. lead to the high false-alarm rate due to non-adaptive and sensitive parameters setting. We presented an online model for anomaly detecting using machine learning theory. However, most existing methods based on machine learning linked all features from difference sub-systems into a long feature vector directly, which is difficult to both exploit the complement information between sub-systems and ignore multi-view features enhancing the classification performance. Aiming to this problem, the proposed method automatic fuses multi-view features and optimize the discriminative model to enhance the accuracy. This model takes advantage of extreme learning machine (ELM) to improve detection efficiency. ELM is the single hidden layer neural network, which is transforming iterative solution the output weights to solution of linear equations and avoiding the local optimal solution. Moreover, we rank anomies according to the relationship between samples and the classification boundary, and then assigning weights for ranked anomalies, retraining the classification model finally. Our method exploits the complement information between sub-systems sufficiently, and avoids the influence from imbalance dataset, therefore, deal with various challenges from the cloud computing platform. We deploy the privately cloud platform by Openstack, verifying the proposed model and comparing results to the state-of-the-art methods with better efficiency and simplicity.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.