Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously (1901.08779v2)

Published 25 Jan 2019 in cs.LG and stat.ML

Abstract: We develop the first general semi-bandit algorithm that simultaneously achieves $\mathcal{O}(\log T)$ regret for stochastic environments and $\mathcal{O}(\sqrt{T})$ regret for adversarial environments without knowledge of the regime or the number of rounds $T$. The leading problem-dependent constants of our bounds are not only optimal in some worst-case sense studied previously, but also optimal for two concrete instances of semi-bandit problems. Our algorithm and analysis extend the recent work of (Zimmert & Seldin, 2019) for the special case of multi-armed bandit, but importantly requires a novel hybrid regularizer designed specifically for semi-bandit. Experimental results on synthetic data show that our algorithm indeed performs well uniformly over different environments. We finally provide a preliminary extension of our results to the full bandit feedback.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Julian Zimmert (30 papers)
  2. Haipeng Luo (99 papers)
  3. Chen-Yu Wei (46 papers)
Citations (76)