When Can Neural Networks Learn Connected Decision Regions? (1901.08710v1)
Abstract: Previous work has questioned the conditions under which the decision regions of a neural network are connected and further showed the implications of the corresponding theory to the problem of adversarial manipulation of classifiers. It has been proven that for a class of activation functions including leaky ReLU, neural networks having a pyramidal structure, that is no layer has more hidden units than the input dimension, produce necessarily connected decision regions. In this paper, we advance this important result by further developing the sufficient and necessary conditions under which the decision regions of a neural network are connected. We then apply our framework to overcome the limits of existing work and further study the capacity to learn connected regions of neural networks for a much wider class of activation functions including those widely used, namely ReLU, sigmoid, tanh, softlus, and exponential linear function.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.