Geometry of $\mathbb{R}^{+}\times E_{3(3)}$ Exceptional Field Theory and F-theory (1901.08295v1)
Abstract: We consider a non trivial solution to the section condition in the context of $\mathbb{R}{+}\times E_{3(3)}$ exceptional field theory and show that allowing fields to depend on the additional stringy coordinates of the extended internal space permits to describe the monodromies of (p,q) 7-branes in the context of F-theory. General expressions of non trivial fluxes with associated linear and quadratic constraints are obtained via a comparison to the embedding tensor of eight dimensional gauged maximal supergravity with gauged trombone symmetry. We write an explicit generalised Christoffel symbol for $E_{3(3)}$ EFT and show that the equations of motion of F-theory, namely the vanishing of a 4 dimensional Ricci tensor with two of its dimensions fibered, can be obtained from a generalised Ricci tensor and an appropriate type IIB ansatz for the metric.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.