Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Performance Comparison of Loss Functions for Deep Face Recognition (1901.05903v2)

Published 1 Jan 2019 in cs.CV

Abstract: Face recognition is one of the most widely publicized feature in the devices today and hence represents an important problem that should be studied with the utmost priority. As per the recent trends, the Convolutional Neural Network (CNN) based approaches are highly successful in many tasks of Computer Vision including face recognition. The loss function is used on the top of CNN to judge the goodness of any network. In this paper, we present a performance comparison of different loss functions such as Cross-Entropy, Angular Softmax, Additive-Margin Softmax, ArcFace and Marginal Loss for face recognition. The experiments are conducted with two CNN architectures namely, ResNet and MobileNet. Two widely used face datasets namely, CASIA-Webface and MS-Celeb-1M are used for the training and benchmark Labeled Faces in the Wild (LFW) face dataset is used for the testing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yash Srivastava (8 papers)
  2. Vaishnav Murali (4 papers)
  3. Shiv Ram Dubey (55 papers)
Citations (45)

Summary

We haven't generated a summary for this paper yet.