Papers
Topics
Authors
Recent
Search
2000 character limit reached

Double variational principle for mean dimension with potential

Published 17 Jan 2019 in math.DS, cs.IT, and math.IT | (1901.05628v1)

Abstract: This paper contributes to the mean dimension theory of dynamical systems. We introduce a new concept called mean dimension with potential and develop a variational principle for it. This is a mean dimension analogue of the theory of topological pressure. We consider a minimax problem for the sum of rate distortion dimension and the integral of a potential function. We prove that the minimax value is equal to the mean dimension with potential for a dynamical system having the marker property. The basic idea of the proof is a dynamicalization of geometric measure theory.

Citations (38)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.