Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polyvector fields and polydifferential operators associated with Lie pairs (1901.04602v2)

Published 14 Jan 2019 in math.QA

Abstract: We prove that the spaces $\operatorname{tot}\big(\Gamma(\Lambda\bullet A\vee \otimes_R\mathcal{T}{\operatorname{poly}}{\bullet}\big)$ and $\operatorname{tot}\big(\Gamma(\Lambda\bullet A\vee)\otimes_R\mathcal{D}{\operatorname{poly}}{\bullet}\big)$ associated with a Lie pair $(L,A)$ each carry an $L_\infty$ algebra structure canonical up to an $L_\infty$ isomorphism with the identity map as linear part. These two spaces serve, respectively, as replacements for the spaces of formal polyvector fields and formal polydifferential operators on the Lie pair $(L,A)$. Consequently, both $\mathbb{H}\bullet_{\operatorname{CE}}(A,\mathcal{T}_{\operatorname{poly}}{\bullet})$ and $\mathbb{H}\bullet_{\operatorname{CE}}(A,\mathcal{D}_{\operatorname{poly}}{\bullet})$ admit unique Gerstenhaber algebra structures. Our approach is based on homotopy transfer and the construction of a Fedosov dg Lie algebroid (i.e. a dg foliation on a Fedosov dg manifold).

Summary

We haven't generated a summary for this paper yet.