Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Ensemble Method for Interval-Censored Time-to-Event Data (1901.04599v3)

Published 14 Jan 2019 in stat.ME

Abstract: Interval-censored data analysis is important in biomedical statistics for any type of time-to-event response where the time of response is not known exactly, but rather only known to occur between two assessment times. Many clinical trials and longitudinal studies generate interval-censored data; one common example occurs in medical studies that entail periodic follow-up. In this paper we propose a survival forest method for interval-censored data based on the conditional inference framework. We describe how this framework can be adapted to the situation of interval-censored data. We show that the tuning parameters have a non-negligible effect on the survival forest performance and guidance is provided on how to tune the parameters in a data-dependent way to improve the overall performance of the method. Using Monte Carlo simulations we find that the proposed survival forest is at least as effective as a survival tree method when the underlying model has a tree structure, performs similarly to an interval-censored Cox proportional hazards model fit when the true relationship is linear, and outperforms the survival tree method and Cox model when the true relationship is nonlinear. We illustrate the application of the method on a tooth emergence data set.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.