Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quotients of higher dimensional Cremona groups

Published 14 Jan 2019 in math.AG and math.GR | (1901.04145v4)

Abstract: We study large groups of birational transformations Bir(X), where X is a variety of dimension at least 3, defined over C or a subfield of C. Two prominent cases are when X is the projective space, in which case Bir(X) is the Cremona group of rank n, or when X is a smooth cubic hypersurface. In both cases, and more generally when X is birational to a conic bundle, we produce infinitely many distinct group homomorphisms from Bir(X) to Z/2, showing in particular that the group Bir(X) is not perfect and thus not simple. As a consequence we also obtain that the Cremona group of rank n at least 3 is not generated by linear and Jonqui`eres elements.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.