Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Localizing the $E_2$ page of the Adams spectral sequence (1901.03787v1)

Published 12 Jan 2019 in math.AT

Abstract: There is only one nontrivial localization of $\pi_S_{(p)}$ (the chromatic localization at $v_0=p$), but there are infinitely many nontrivial localizations of the Adams $E_2$ page for the sphere. The first non-nilpotent element in the $E_2$ page after $v_0$ is $b_{10}\in \mathrm{Ext}A{2p(p-1)-2}(\mathbb{F}_p,\mathbb{F}_p)$. We work at $p=3$ and study $b{10}{-1}\mathrm{Ext}_P(\mathbb{F}_3,\mathbb{F}_3)$ (where $P$ is the algebra of dual reduced powers), which agrees with the infinite summand $\mathrm{Ext}P(\mathbb{F}_3,\mathbb{F}_3)$ of $\mathrm{Ext}_A(\mathbb{F}_3,\mathbb{F}_3)$ above a line of slope ${1\over 23}$. We compute up to the $E_9$ page of an Adams spectral sequence in the category $\mathrm{Stable}(P)$ converging to $b{10}{-1}\mathrm{Ext}_P(\mathbb{F}_3,\mathbb{F}_3)$, and conjecture that the spectral sequence collapses at $E_9$. We also give a complete calculation of $b_{10}{-1}\mathrm{Ext}_P^(\mathbb{F}_3,\mathbb{F}_3[\xi_13])$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.