Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Analysis of the Accuracy of the P300 BCI (1901.03299v1)

Published 11 Dec 2018 in eess.SP, cs.LG, q-bio.NC, and stat.ML

Abstract: The P300 Brain-Computer Interface (BCI) is a well-established communication channel for severely disabled people. The P300 event-related potential is mostly characterized by its amplitude or its area, which correlate with the spelling accuracy of the P300 speller. Here, we introduce a novel approach for estimating the efficiency of this BCI by considering the P300 signal-to-noise ratio (SNR), a parameter that estimates the spatial and temporal noise levels and has a significantly stronger correlation with spelling accuracy. Furthermore, we suggest a Gaussian noise model, which utilizes the P300 event-related potential SNR to predict spelling accuracy under various conditions for LDA-based classification. We demonstrate the utility of this analysis using real data and discuss its potential applications, such as speeding up the process of electrode selection.

Citations (6)

Summary

We haven't generated a summary for this paper yet.