Papers
Topics
Authors
Recent
2000 character limit reached

Nonparametric Multiple Change Point Detection for Non-Stationary Times Series

Published 10 Jan 2019 in math.ST and stat.TH | (1901.03036v3)

Abstract: This article considers a nonparametric method for detecting change points in non-stationary time series. The proposed method will divide the time series into several segments so that between two adjacent segments, the normalized spectral density functions are different. The theory is based on the assumption that within each segment, time series is a linear process, which means that our method works not only for classic time series models, e.g., causal and invertible ARMA process, but also preserves good performance for non-invertible moving average process. We show that our estimations for change points are consistent. Also, a Bayesian information criterion is applied to estimate the member of change points consistently. Simulation results as well as empirical results will be presented.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.