Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Change Captioning (1901.02527v2)

Published 8 Jan 2019 in cs.CV and cs.AI

Abstract: Describing what has changed in a scene can be useful to a user, but only if generated text focuses on what is semantically relevant. It is thus important to distinguish distractors (e.g. a viewpoint change) from relevant changes (e.g. an object has moved). We present a novel Dual Dynamic Attention Model (DUDA) to perform robust Change Captioning. Our model learns to distinguish distractors from semantic changes, localize the changes via Dual Attention over "before" and "after" images, and accurately describe them in natural language via Dynamic Speaker, by adaptively focusing on the necessary visual inputs (e.g. "before" or "after" image). To study the problem in depth, we collect a CLEVR-Change dataset, built off the CLEVR engine, with 5 types of scene changes. We benchmark a number of baselines on our dataset, and systematically study different change types and robustness to distractors. We show the superiority of our DUDA model in terms of both change captioning and localization. We also show that our approach is general, obtaining state-of-the-art results on the recent realistic Spot-the-Diff dataset which has no distractors.

Citations (5)

Summary

We haven't generated a summary for this paper yet.