Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Choosing the Right Word: Using Bidirectional LSTM Tagger for Writing Support Systems (1901.02490v1)

Published 8 Jan 2019 in cs.CL

Abstract: Scientific writing is difficult. It is even harder for those for whom English is a second language (ESL learners). Scholars around the world spend a significant amount of time and resources proofreading their work before submitting it for review or publication. In this paper we present a novel machine learning based application for proper word choice task. Proper word choice is a generalization the lexical substitution (LS) and grammatical error correction (GEC) tasks. We demonstrate and evaluate the usefulness of applying bidirectional Long Short Term Memory (LSTM) tagger, for this task. While state-of-the-art grammatical error correction uses error-specific classifiers and machine translation methods, we demonstrate an unsupervised method that is based solely on a high quality text corpus and does not require manually annotated data. We use a bidirectional Recurrent Neural Network (RNN) with LSTM for learning the proper word choice based on a word's sentential context. We demonstrate and evaluate our application on both a domain-specific (scientific), writing task and a general-purpose writing task. We show that our domain-specific and general-purpose models outperform state-of-the-art general context learning. As an additional contribution of this research, we also share our code, pre-trained models, and a new ESL learner test set with the research community.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Victor Makarenkov (5 papers)
  2. Lior Rokach (63 papers)
  3. Bracha Shapira (36 papers)
Citations (34)

Summary

We haven't generated a summary for this paper yet.