Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FIGR: Few-shot Image Generation with Reptile (1901.02199v1)

Published 8 Jan 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Generative Adversarial Networks (GAN) boast impressive capacity to generate realistic images. However, like much of the field of deep learning, they require an inordinate amount of data to produce results, thereby limiting their usefulness in generating novelty. In the same vein, recent advances in meta-learning have opened the door to many few-shot learning applications. In the present work, we propose Few-shot Image Generation using Reptile (FIGR), a GAN meta-trained with Reptile. Our model successfully generates novel images on both MNIST and Omniglot with as little as 4 images from an unseen class. We further contribute FIGR-8, a new dataset for few-shot image generation, which contains 1,548,944 icons categorized in over 18,409 classes. Trained on FIGR-8, initial results show that our model can generalize to more advanced concepts (such as "bird" and "knife") from as few as 8 samples from a previously unseen class of images and as little as 10 training steps through those 8 images. This work demonstrates the potential of training a GAN for few-shot image generation and aims to set a new benchmark for future work in the domain.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Louis Clouâtre (5 papers)
  2. Marc Demers (1 paper)
Citations (89)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com