Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential Strong Converse for Successive Refinement with Causal Decoder Side Information (1901.01356v2)

Published 5 Jan 2019 in cs.IT and math.IT

Abstract: We consider the $k$-user successive refinement problem with causal decoder side information and derive an exponential strong converse theorem. The rate-distortion region for the problem can be derived as a straightforward extension of the two-user case by Maor and Merhav (2008). We show that for any rate-distortion tuple outside the rate-distortion region of the $k$-user successive refinement problem with causal decoder side information, the joint excess-distortion probability approaches one exponentially fast. Our proof follows by judiciously adapting the recently proposed strong converse technique by Oohama using the information spectrum method, the variational form of the rate-distortion region and H\"older's inequality. The lossy source coding problem with causal decoder side information considered by El Gamal and Weissman is a special case ($k=1$) of the current problem. Therefore, the exponential strong converse theorem for the El Gamal and Weissman problem follows as a corollary of our result.

Summary

We haven't generated a summary for this paper yet.