Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Successive Refinement of Abstract Sources (1707.09567v2)

Published 29 Jul 2017 in cs.IT and math.IT

Abstract: In successive refinement of information, the decoder refines its representation of the source progressively as it receives more encoded bits. The rate-distortion region of successive refinement describes the minimum rates required to attain the target distortions at each decoding stage. In this paper, we derive a parametric characterization of the rate-distortion region for successive refinement of abstract sources. Our characterization extends Csiszar's result to successive refinement, and generalizes a result by Tuncel and Rose, applicable for finite alphabet sources, to abstract sources. This characterization spawns a family of outer bounds to the rate-distortion region. It also enables an iterative algorithm for computing the rate-distortion region, which generalizes Blahut's algorithm to successive refinement. Finally, it leads a new nonasymptotic converse bound. In all the scenarios where the dispersion is known, this bound is second-order optimal. In our proof technique, we avoid Karush-Kuhn-Tucker conditions of optimality, and we use basic tools of probability theory. We leverage the Donsker-Varadhan lemma for the minimization of relative entropy on abstract probability spaces.

Citations (9)

Summary

We haven't generated a summary for this paper yet.