Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiuser Successive Refinement and Multiple Description Coding (0707.4133v2)

Published 27 Jul 2007 in cs.IT and math.IT

Abstract: We consider the multiuser successive refinement (MSR) problem, where the users are connected to a central server via links with different noiseless capacities, and each user wishes to reconstruct in a successive-refinement fashion. An achievable region is given for the two-user two-layer case and it provides the complete rate-distortion region for the Gaussian source under the MSE distortion measure. The key observation is that this problem includes the multiple description (MD) problem (with two descriptions) as a subsystem, and the techniques useful in the MD problem can be extended to this case. We show that the coding scheme based on the universality of random binning is sub-optimal, because multiple Gaussian side informations only at the decoders do incur performance loss, in contrast to the case of single side information at the decoder. We further show that unlike the single user case, when there are multiple users, the loss of performance by a multistage coding approach can be unbounded for the Gaussian source. The result suggests that in such a setting, the benefit of using successive refinement is not likely to justify the accompanying performance loss. The MSR problem is also related to the source coding problem where each decoder has its individual side information, while the encoder has the complete set of the side informations. The MSR problem further includes several variations of the MD problem, for which the specialization of the general result is investigated and the implication is discussed.

Citations (7)

Summary

We haven't generated a summary for this paper yet.